Theoretical Nanoelectronics

The quantum mechanical nature of matter is the basis of all functioning of electronic devices. We use techniques from many-body physics, from quantum statistical physics, and from the mathematics of topology, to analyze the properties of electrons in a wide range of present-day exploratory devices. Our work can enable the development of new qubits, and new approaches to building a quantum computer.

Head: Prof. Dr. David DiVincenzo

News and Events


Innovations for Quantum Computing with Topological Insulators

Forschungszentrum Jülich and the University of Würzburg will together investigate the quantum phenomena of topological materials and the opportunities they present within quantum computing. The Free State of Bavaria is funding the project to the tune of € 13 million.


PGI Colloquium: Prof. Dr. Rami Barends, Forschungszentrum Jülich (PGI-13), Germany; previously Google LLC, USA

One of the outstanding scientific challenges of this decade is the construction of an architecture and development of a methodology that can enable useful quantum computing. Superconducting quantum circuits have demonstrated unparalleled performance, by outperforming the world's most powerful supercomputers on a specific sampling task.



Electronic Properties of Nanostructured Materials

Atomic order-disorder transitions or phase transitions like freezing-melting are among the most dramatic effects occurring in condensed matter.


Quantum Information Processing

We work at the fundamental level on the theory of quantum information processing, developing new concepts for qubits and multi-qubit modules.  We work closely with the experimental scientists in PGI-11.