Theoretical Nanoelectronics

The quantum mechanical nature of matter is the basis of all functioning of electronic devices. We use techniques from many-body physics, from quantum statistical physics, and from the mathematics of topology, to analyze the properties of electrons in a wide range of present-day exploratory devices. Our work can enable the development of new qubits, and new approaches to building a quantum computer.

Head: Prof. Dr. David DiVincenzo

News and Events


Innovations for Quantum Computing with Topological Insulators

Forschungszentrum Jülich and the University of Würzburg will together investigate the quantum phenomena of topological materials and the opportunities they present within quantum computing. The Free State of Bavaria is funding the project to the tune of € 13 million.

Single-molecule devices

PGI Colloquium: Prof. Dr. Elke Scheer, University of Konstanz, Germany

The possibility to fabricate electronic devices with functional building blocks of atomic size is a major driving force of nanotechnology. Key elements in microelectronics are reliable switches and memories as well as devices showing spin-dependent transport phenomena.



Electronic Properties of Nanostructured Materials

Atomic order-disorder transitions or phase transitions like freezing-melting are among the most dramatic effects occurring in condensed matter.


Quantum Information Processing

We work at the fundamental level on the theory of quantum information processing, developing new concepts for qubits and multi-qubit modules.  We work closely with the experimental scientists in PGI-11.